f08 — Least-squares and Eigenvalue Problems (LAPACK) f08sec

NAG C Library Function Document

nag_dsygst (f08sec)

1 Purpose

nag_dsygst (f08sec) reduces a real symmetric-definite generalized eigenproblem Az = ABz, ABz = Az or
BAz =)z to the standard form Cy = Ay, where A4 is a real symmetric matrix and B has been factorized by
nag_dpotrf (f07fdc).

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dsygst (Nag_OrderType order, Nag_ComputeType comp_type,
Nag_UploType uplo, Integer n, double a[], Integer pda, const double b[],
Integer pdb, NagError xfail)

3 Description

To reduce the real symmetric-definite generalized eigenproblem Az = ABz, ABz = Az or BAz =)z to the
standard form Cy =)y, this function must be preceded by a call to nag_dpotrf (f07fdc) which computes
the Cholesky factorization of B; B must be positive-definite.

The different problem types are specified by the argument comp_type, as indicated in the table below.
The table shows how C is computed by the function, and also how the eigenvectors z of the original
problem can be recovered from the eigenvectors of the standard form.

comp_type | Problem uplo B C z
1 Az = \Bz | Nag_Upper | 'y | u™"4u7' | Uy
Nag_Lower | ;;T | ;=17 | 7Ty
2 ABz =)Xz | Nag Upper | y U | U4U”T U! y
Nag_Lower | ;;T Lrar L_Ty
3 BAz = Xz | Nag_Upper | U U | v4aUT Uty
Nag_Lower | ;;T | ;T 1 Ly

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag ColMajor.

[NP3660/8] f08sec.

f08sec NAG C Library Manual

2: comp_type — Nag ComputeType Input
On entry: indicates how the standard form is computed.
comp_type = Nag_Compute_1
if uplo = Nag Upper, C = U taut,
if uplo = Nag_Lower, C = Ltar ",
comp_type = Nag_Compute_2 or Nag_Compute_3
if uplo = Nag Upper, C = UAU";
if uplo = Nag_Lower, C = L*AL.
Constraint. comp_type = Nag Compute 1, Nag Compute 2 or Nag Compute 3.

3: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A4 is stored and how B has been
factorized.

uplo = Nag_Upper

The upper triangular part of 4 is stored and B = U U.
uplo = Nag Lower

The lower triangular part of 4 is stored and B = LL".
Constraint. uplo = Nag_Upper or Nag Lower.

4: n — Integer Input
On entry: n, the order of the matrices 4 and B.

Constraint: n > 0.

5: a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda x n).
If order = Nag_ColMajor, the (i,j)th element of the matrix 4 is stored in a[(j — 1) x pda +i— 1].
If order = Nag_RowMajor, the (i,j)th element of the matrix 4 is stored in a[(i — 1) x pda +j — 1].
On entry: the n by n symmetric matrix 4.

If uplo = Nag_ Upper, the upper triangular part of 4 must be stored and the elements of the array
below the diagonal are not referenced.

If uplo = Nag_Lower, the lower triangular part of 4 must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the upper or lower triangle of 4 is overwritten by the corresponding upper or lower triangle
of C as specified by comp_type and uplo.
6: pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > max(1,n).

7: b[dim] — const double Input
Note: the dimension, dim, of the array b must be at least max(1, pdb X n).
If order = Nag_ColMajor, the (i,j)th element of the matrix B is stored in b[(j — 1) x pdb + i — 1].
If order = Nag_RowMajor, the (i,;)th element of the matrix B is stored in b[(i — 1) x pdb +, — 1].
On entry: the Cholesky factor of B as specified by uplo and returned by nag_dpotrf (f07fdc).

f08sec.2 [NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08sec

8: pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint: pdb > max(1,n).

9: fail — NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdb = (value).
Constraint: pdb > 0.
NE_INT 2

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.
7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B~" (if
comp_type = Nag Compute 1) or B (if comp type = Nag Compute 2 or Nag Compute 3). When
the function is used as a step in the computation of eigenvalues and eigenvectors of the original problem,
there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion.

8 Further Comments

The total number of floating-point operations is approximately n°.

The complex analogue of this function is nag_zhegst (f08ssc).

[NP3660/8] f08sec.3

f08sec

9 Example

To compute all the eigenvalues of 4z = ABz, where

024 039 042 —0.16
039 —0.11 079 0.63
A=1 042 079 —025 048 and B =

—0.16 0.63 0.48 —0.03

4.16
-3.12
0.56
—0.10

—3.12
5.03
—0.83
1.09

NAG C Library Manual

0.56 —0.10
—0.83 1.18
0.76 0.34
0.34 1.18

Here B is symmetric positive-definite and must first be factorized by nag_dpotrf (f07fdc). The program
calls nag_dsygst (f08sec) to reduce the problem to the standard form Cy = Ay; then nag_dsytrd (f08fec) to
reduce C to tridiagonal form, and nag_dsterf (f08jfc) to compute the eigenvalues.

9.1 Program Text

/* nag_dsygst (f08sec) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>

int main(void)

{
/* Scalars *x/

Integer i, j, n, pda, pdb, d_len, e_len, tau_len;

Integer exit_status=0;

NagError fail;

Nag_UploType uplo;

Nag_OrderType order;

/* Arrays */

char uplo_char([2];

double *a=0, #*b=0, *d=0, *e=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) al(J-1)+*pda
#define B(I,J) b[(J-1)*pdb
order = Nag_ColMajor;
#else
#define A(I,J) al(I-1)+*pda
#define B(I,J) b[(I-1)=*pdb
order = Nag_RowMajor;
#endif

+ +
H H
1
e

+ +
O
1
.

INIT FAIL(fail);

Vprintf ("nag_dsygst (£08sec) Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*x["\n] ");

Vscanf ("$1d%s*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR
pda = n;
pdb = n;
#else
pda = n;
pdb = n;
#endif
d_len = n;
e_len = n-1;
tau_len = n-1;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||

f08sec.4

[NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

NAG_ALLOC(n * n, double))
NAG_ALLOC(d_len, double))
NAG_ALLOC(e_len, double))
au = NAG_ALLOC(tau_len, doub

o Qo
I

1([
1([
! ([
1 (le)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
3
/* Read A and B from data file =*/
Vscanf (" ' %1s ’s*["\n] ", uplo_char);
if (*(unsigned char #*)uplo_char == 'L’)
uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == 'U’)
uplo = Nag_Upper;
else

{

Vprintf ("Unrecognised character for Nag_UploType type\n");

exit_status = -1;
goto END;
}
if (uplo == Nag_Upper)
{
for (1 = 1; 1 <= n; ++1)
{
for (j = i; j <= n; ++3)
Vscanf ("s1f", &A(i,3));
b
Vscanf ("s* ["\n
for (i = 1; i

{

"o

for (j = i; J <= n; ++j)
Vscanf ("s1f", &B(i,3));
3
Vscanf ("s*[*\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= 1i; ++3j)
Vscanf ("$1f", &A(i,J));
b
Vscanf ("s* ["\n
for (i = 1; i

{

o
°

1 ")
<= n; ++1i)

for (j = 1; j <= 1i; ++3)
Vscanf ("$1f", &B(i,3));
}
Vscanf ("sx["\n] ");

3

/* Compute the Cholesky factorization of B */
/* nag_dpotrf (£07fdc).

* Cholesky factorization of real symmetric

* positive-definite matrix

*

/
nag_dpotrf(order, uplo, n, b, pdb, &fail);
if (fail.code != NE_NOERROR)

{

Vprintf ("Error from nag_dpotrf (£07fdc) .\n%s\n", fail.message);

exit_status = 1;
goto END;
}

/* Reduce the problem to standard form C*y = lambda*y, storing =*/

/* the result in A */

/* nag_dsygst (f£08sec).
* Reduction to standard form of real symmetric-definite
* generalized eigenproblem Ax"="lambda”Bx, ABx~="lambda”x
* or BAx"="lambda~x, B factorized by nag_dpotrf (£07fdc)
*/

[NP3660/8]

f08sec

fO08sec.5

f08sec NAG C Library Manual

nag_dsygst(order, Nag_Compute_1, uplo, n, a, pda, b, pdb, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from nag_dsygst (f08sec).\n%s\n", fail.message) ;
exit_status = 1;
goto END;

}

/* Reduce C to tridiagonal form T = (Q**T)*C*Q */
/* nag_dsytrd (f08fec).
* Orthogonal reduction of real symmetric matrix to
* symmetric tridiagonal form
*
/
nag_dsytrd(order, uplo, n, a, pda, d, e, tau, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dsytrd (£08fec).\n%s\n", fail.message);
exit_status = 1;
goto END;
3
/* Calculate the eigenvalues of T (same as C) */
/* nag_dsterf (£08jfc).
* All eigenvalues of real symmetric tridiagonal matrix,
* root-free variant of QL or QR
*/
nag_dsterf(n, 4, e, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dsterf (£08jfc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print eigenvalues */
Vprintf ("Eigenvalues\n");

for (i = 1; 1 <= n; ++1)
Vprintf ("$8.4f%s", d[i-1], 1%9==0 ?"\n":" ");
Vprintf ("\n") ;
END:
if (a) NAG_FREE (a);
if (b) NAG_FREE (b);
if (d) NAG_FREE (d);
if (e) NAG_FREE (e);
if (tau) NAG_FREE (tau);

return exit_status;

9.2 Program Data

nag_dsygst (f08sec) Example Program Data

4 :Value of N
'L’ :Value of UPLO
0.24

0.39 -0.11

0.42 0.79 -0.25

-0.16 0.63 0.48 -0.03 :End of matrix A
4.16

-3.12 5.03

0.56 -0.83 0.76

-0.10 1.09 0.34 1.18 :End of matrix B

9.3 Program Results

nag_dsygst (f08sec) Example Program Results

Eigenvalues
-2.2254 -0.4548 0.1001 1.1270

f08sec.6 (last) [NP3660/8]

	f08sec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	comp_type
	uplo
	n
	a
	pda
	b
	pdb
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

